Disinfectant wipes mop the floor with chlorine solution

Posted

25th May 2018

Research

There are few well-controlled studies investigating the impact of disinfectant wipes in a clinical setting compared with standard methods. A study from a group of researchers in Cardiff shows that one-step cleaning and disinfectant wipes are more effective than two-step detergent and chlorine solution cleaning / disinfection in removing microbial contamination from hospital surfaces.

What was the method?

The double cross-over study was performed on two wards with an identical layout in Cardiff, Wales. The wards received either standard cleaning / disinfection (two-step detergent cleaning followed by chlorine solution disinfection) or disinfectant wipes (one-step cleaning and disinfectant wipes that produce peracetic acid and hydrogen peroxide when activated by water). The methods were allocated to sequential 3-months blocks so that each ward crossed over between the two cleaning / disinfection approaches, along with a baseline period and washout periods. A training programme for all staff involved with cleaning was delivered before both the standing cleaning / disinfection and disinfectant wipe phases. Weekly samples were collected from 11 surfaces over the course of the study, and ATP was used to measure surface cleanliness.

RELATED RESEARCH: The impact of Clinell Universal on reducing SARS-CoV-2 contamination in England’s hospitals

The value of training

The introduction of training alone improved the efficacy of standard cleaning and disinfection, resulting in a reduction in colony counts, ATP score, and the presence of indicator organisms. The introduction of wipes demonstrated an incremental benefit over training and standard methods, resulting in a significant reduction in total aerobic count, total anaerobic count, and ATP score compared with baseline; the overall reduction in aerobic count was significantly greater for wipes compared with detergent and chlorine solution. Furthermore, the reintroduction of standard cleaning and disinfection was associated with the counts increasing significantly on many of the items.

The incremental benefit of wipes over training and standard methods is best illustrated by trends in indicator organisms (see Figure). Here, the number of indicator organisms decreased as a result of training and standard methods, but decreased following the implementation of disinfectant wipes. The reduction of antibiotic-resistant Gram-negative bacteria (including ESBLs and CRE) was the most marked.

Reduces risk in the clinical setting

This paper illustrates both the value of training to improve the standards of conventional cleaning and disinfection, and the incremental value of introducing disinfectant wipes. The disinfectant wipes provided a one-step cleaning and disinfection process that was easier and more effective that a two-step cleaning then disinfection process involving detergent and chorine solution. Although the study was not designed to evaluate any clinical outcomes, the reduction in microbial contamination associated with the introduction of disinfectant wipes, especially contamination with multidrug-resistant Gram-negative bacteria, reduces risk in the clinical setting.

If you’d like to find out more about our all-in-one cleaning and disinfectant wipes, visit our Clinell Universal Wipes page. Help spread the word about infection prevention by sharing this article on social.

SHARE THIS ARTICLE

Tags

Latest News

Products

Introducing HEXI HUB: A seamless transition in our product line

We’re pleased to announce an update to our product offering…

Products, Research

Innovative solutions for tackling Carbapenemase-producing Enterobacteriaceae (CPE) at King’s College Hospitals

King’s College Hospital NHS Foundation Trust, one of London’s largest…

Products

Gloves Off: reducing unnecessary plastic waste during environmental cleaning and disinfection

In this blog, Dr Phil Norville discusses the momentum-gaining ‘Gloves…

Products

Gloves Off: Navigating SDS sheets and skin safety claims in environmental decontamination products

In this blog, James Clarke (Head of R&D, Science &…